On the indeterminacies of convolutive blind signal separation based on second order statistics
نویسندگان
چکیده
Recently, several blind signal separation algorithms have been developed which are based on second order statistics. Little has been published however on whether second order statistics are sufficient to obtain a unique solution. Especially for applications that involve convolutive mixing and unmixing of signals that are correlated in time, there is a lack of knowledge on why and in what cases second order statistics suffice. This paper investigates the indeterminacies that are introduced when second order statistics are used and presents a theorem for the unmixing system to be uniquely found using second order statistics.
منابع مشابه
Adaptive subspace algorithm for blind separation of independent sources in convolutive mixture
We propose an algorithm for blind separation of sources in convolutive mixtures based on a subspace approach. The advantage of this algorithm is that it reduces a convolutive mixture to an instantaneous mixture by using only second-order statistics (but more sensors than sources). Furthermore, the sources can be separated by using any algorithm for an instantaneous mixture (based generally on f...
متن کاملFirst International Conference and Exhibition Digital Signal Processing ( DSP ' 98 ) Subspace Adaptive Algorithm For Blind Separation Of Convolutive Mixtures By Conjugate Gradient Method
In this paper, a new subspace adaptive algorithm, for blind separation of convolutive mixture, is proposed. This algorithm can be decomposed into two steps: At rst, the convolutive mixture will be reduced to an instantaneous mixture (memoryless mixture), using a second-order statistics criterion based on subspace approach. The second step consists on the separation of the residual instantaneous...
متن کاملBlind Separation of Jointly Stationary Correlated Sources
The separation of unobserved sources from mixed observed data is a fundamental signal processing problem. Most of the proposed techniques for solving this problem rely on independence or at least uncorrelation assumption for source signals. This paper introduces a technique for cases that source signals are correlated with each other. The method uses Wold decomposition principle for extracting ...
متن کاملSparse filter models for solving permutation indeterminacy in convolutive blind source separation
Frequency-domain methods for estimating mixing filters in convolutive blind source separation (BSS) suffer from permutation and scaling indeterminacies in sub-bands. Solving these indeterminacies are critical to such BSS systems. In this paper, we propose to use sparse filter models to tackle the permutation problem. It will be shown that the l1-norm of the filter matrix increases with permutat...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کامل